New Advances in Logic-Based Probabilistic Modeling by PRISM
نویسندگان
چکیده
We review a logic-based modeling language PRISM and report recent developments including belief propagation by the generalized inside-outside algorithm and generative modeling with constraints. The former implies PRISM subsumes belief propagation at the algorithmic level. We also compare the performance of PRISM with state-of-theart systems in statistical natural language processing and probabilistic inference in Bayesian networks respectively, and show that PRISM is reasonably competitive.
منابع مشابه
A Logic-based Approach to Generatively Defined Discriminative Modeling
Conditional random fields (CRFs) are usually specified by graphical models but in this paper we propose to use probabilistic logic programs and specify them generatively. Our intension is first to provide a unified approach to CRFs for complex modeling through the use of a Turing complete language and second to offer a convenient way of realizing generative-discriminative pairs in machine learn...
متن کاملGenerative Modeling with Failure in PRISM
PRISM is a logic-based Turing-complete symbolicstatistical modeling language with a built-in parameter learning routine. In this paper,we enhance the modeling power of PRISM by allowing general PRISM programs to fail in the generation process of observable events. Introducing failure extends the class of definable distributions but needs a generalization of the semantics of PRISM programs. We p...
متن کاملLogic-Based Probabilistic Modeling
After briefly mentioning the historical background of PLL/SRL, we examine PRISM, a logic-based modeling language, as an instance of PLL/SRL research. We first look at the distribution semantics, PRISM’s semantics, which defines a probability measure on a set of possible Herbrand models. We then mention characteristic features of PRISM as a tool for probabilistic modeling.
متن کاملPRISM User ’ s Manual ( Version 2 . 1 )
Preface The past several years have witnessed a tremendous interest in logic-based probabilistic learning as testified by the number of formalisms and systems and their applications. Logic-based probabilistic learning is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-bas...
متن کاملPRISM User ’ s Manual ( Version 1 . 11 . 1 )
Preface The past few years have witnessed a tremendous interest in logic-based probabilistic learning as testified by the number of formalisms and systems and their applications. Logic-based probabilistic learning is a multidisciplinary research area that integrates relational or logic formalisms, probabilistic reasoning mechanisms, and machine learning and data mining principles. Logic-based p...
متن کامل